Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum.

نویسندگان

  • P Epple
  • K Apel
  • H Bohlmann
چکیده

Thionins are antimicrobial proteins that are thought to be involved in plant defense. Concordant with this view, we have recently shown that the Arabidopsis thionin Thi2.1 gene is inducible by phytopathogenic fungi. Here, we demonstrate that constitutive overexpression of this thionin enhances the resistance of the susceptible ecotype Columbia (Col-2) against attack by Fusarium oxysporum f sp matthiolae. Transgenic lines had a reduced loss of chlorophyll after inoculation and supported significantly less fungal growth on the cotyledons, as evaluated by trypan blue staining. Moreover, fungi on cotyledons of transgenic lines had more hyphae with growth anomalies, including hyperbranching, than on cotyledons of the parental line. No transcripts for pathogenesis-related PR-1, PR-5, or the pathogen-inducible plant defensin Pdf1.2 could be detected in uninoculated transgenic seedlings, indicating that all of the observed effects of the overexpressing lines are most likely the result of the toxicity of the THI2.1 thionin. Our findings strongly support the view that thionins are defense proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Delivered RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1, and OPR) in the hemi-biotrophic fungus F. oxysporum f. sp. conglutinans. ...

متن کامل

Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton

Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon inf...

متن کامل

Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB)

Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the US citrus industry. There are no proven strategies to eliminate HLB disease and no cultivar has been identified with strong HLB resistance. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri). In this study, we cha...

متن کامل

RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific.

Arabidopsis thaliana ecotypes differ in their susceptibility to Fusarium wilt diseases. Ecotype Taynuilt-0 (Ty-0) is susceptible to Fusarium oxysporum forma specialis (f.) matthioli whereas Columbia-0 (Col-0) is resistant. Segregation analysis of a cross between Ty-0 and Col-0 revealed six dominant RESISTANCE TO FUSARIUM OXYSPORUM (RFO) loci that significantly contribute to f. matthioli resista...

متن کامل

Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 1997